


Date Planned :/_/_						Daily Tutoria	l Sheet-2	Expected Duration : 90 Min			
Actual Date of Attempt ://					JEE Main Archive			Exact Duration :			
16.	Boron	cannot form w	hich one o	of the i	following anions ?					(2011)	
	(A)	BF_6^{3-}	(B)	BH_4	1	(C)	B(OH) ₄	(D)	BO_2^-		
17.	Which	g exists as	s coval	lent c	rystals in the	solid state?			(2013)		
	(A)	Phosphate	(B)	Iodir	ne	(C)	Silicon	(D)	Sulphur		
18.	Match the items in Column-I with its main use listed in Column-II :									(2016)	
	Column-I					Column	ı-II				
	(I)	Silica gel			(p)	Transistor					
	(II)	Silicon			(p)	Ion-exchang	ger	1			
	(III) Silicone			(r)	Drying agen	t					
	(IV)	Silicate			(s)	Sealant		=			
	(A)	(I)-(r), (II)-(p),	(III)-(s), (I ^r	V)-(q)		(B)	(I)-(s), (II)-(p)	」 , (III)-(q), (
	(C) (I)-(q), (II)-(s), (III)-(p), (IV)-(r)			V)-(r)		(D)	(I)-(q), (II)-(p)), (III)-(s), (IV)-(r)			
	 Reason: Hybridization of carbon in diamond and graphite are sp³ and sp², respectively. (A) Both assertion and reason are correct, and the reason is the correct explanation for the assertion. (B) Both assertion and reason are correct, but the reason is not the correct explanation for the assertion. (C) Assertion is incorrect statement, but the reason is correct. (D) Both assertion and reason are incorrect. 										
20.	The nu	ımber of 2-cen	tre-2-elect	ron ar	and 3-centre-2-electron bonds in I			B_2H_6 , res	nectively are:		
	(A)	2 and 1	(B)	1 on	ıd 2				pectively, are.	(2019)	
		minium is usually found in +3 es. This is due to : diagonal relationship inert pair effect				(C)	2 and 2	(D)	2 and 4	(2019)	
21.		This is due to diagonal rela	: tionship					(D)	2 and 4 s in +1 and +	, ,	
21.22.	states. (A) (C)	This is due to diagonal rela	: tionship ect	ı +3 c	oxidat	tion state. In (B) (D)	contrast, thall	(D)	2 and 4 s in +1 and +	3 oxidation	
	states. (A) (C)	This is due to diagonal rela- inert pair effe	: tionship ect	ı +3 c	oxidat	tion state. In (B) (D)	contrast, thall	(D)	2 and 4 s in +1 and +	3 oxidation (2019)	
	states. (A) (C) The ch (A)	This is due to diagonal rela- inert pair effe loride that CAI	: tionship ect NNOT get : (B)	+3 c hydrol CCl	oxidat lysed	(B) (D) is:	contrast, thall lanthanoid o lattice effect	(D)	2 and 4 s in +1 and +	3 oxidation (2019)	
22.	states. (A) (C) The ch (A)	This is due to diagonal relationert pair effective that CAI SnCl ₄	: tionship ect NNOT get : (B)	+3 c hydrol CCl	oxidat lysed	(B) (D) is:	contrast, thall lanthanoid o lattice effect	(D)	2 and 4 s in +1 and +	3 oxidation (2019)	
22.	states. (A) (C) The ch (A) The ele (A)	This is due to diagonal relations in the diagonal relations in the diagonal relations of the dia	: tionship ect NNOT get : (B) s NOT sho	hydrol CCl ow cate	oxidat lysed 4 enatic	(B) (D) is: (C) on is:	contrast, thall lanthanoid of lattice effect $SiCl_4$	(D) tium exist contraction (D)	2 and 4 s in +1 and + n PbCl ₄	3 oxidation (2019)	

25 .	The relative stability of $+1$ oxidation state of group 13 elements follows the order:											
	(A)	Tl < In < Ga < Al				Al < Ga < Tl < In						
	(C)	Ga < Al < In < 7	ΓΙ		(D)	Al < Ga < In <						
26.	Correct statements among a to d regarding silicones are :											
	(a)	They are polymers with hydrophobic character										
	(b)	They are biocompatible										
	(c)	In general, they have high thermal stability and low dielectric strength										
	(d)	Usually, they are resistant to oxidation and used as greases										
	(A)	(a), (b), (c) and			(B)	(a), (b) and (d)						
	(C)	(a) and (b) only			(D)	(a), (b) and (c)						
27.	The co	rrect order of cat	enation	is:					(2019)			
	(A)	$C > Sn > Si \approx C$		(B)	Ge > Sn > Si >							
	(C)	Si > Sn > C > C	le		(D)	$C > Si > Ge \approx S$						
28.	C ₆₀ , a	, an allotrope of carbon contains :										
	(A)	12 hexagons ar	nd 20 pe	entagons	(B)	16 hexagons a	nd 16 pe	entagons				
	(C)	20 hexagons ar	-	_	(D)	18 hexagons a						
29.	Dibora	iborane (B_2H_6) reacts independently with O_2 and H_2O to produce, respectively :										
	(A)	HBO ₂ and H ₃ E	_	(B)	B_2O_3 and H_3BO_3							
	(C)	B_2O_3 and $[BH_2]$		(D)	H_3BO_3 and B_2							
30.	The C	C – C bond length is maximum in :										
3 0.	(A)	C ₆₀	(B)	graphite	(C)	C ₇₀	(D)	diamond	(2019)			
	(22)	C60	(1)	grapinte	(0)	C ₇₀	(D)	diamond				
31.	The nu	ımber of pentago	ns in C	₃₀ and trigons (t	riangles)	in while phosph	norus, re	spectively, are:	(2019)			
	(A)	12 and 4	(B)	20 and 3	(C)	12 and 3	(D)	20 and 4				
32 .	The co	rrect statements	among i	I to III regarding	group 1	3 element oxides	are:		(2019)			
	(I)	Boron trioxide is acidic.										
	(II)	Oxides of aluminium and gallium are amphoteric										
	(III)	Oxides of indium and thallium are basic										
	(A)	(I), (II) and (III)			(B)	(I) and (II) only	•					
	(C)	(II) and (III) only	у		(D)	(I) and (III) only						
33.	The amorphous form of silica is :											
	(A)	tridymite	(B)	kieselguhr	(C)	cristobalite	(D)	quartz				
34.	The reaction of $H_3N_3B_3Cl_3(A)$ with $LiBH_4$ in tetrahydrofuran gives inorganic benzene (B). fu											
	reaction of (A) with (C) leads to $H_3N_3B_3$ (Me) ₃ . Compounds (B) and (C) respectively, are:											
	(A)	Borazine and M	1eMgBr		(B)	Diborane and MeMgBr						
	(C)	Borazine and M	leBr		(D)	Boron nitride a						